

Introduction

[/0 demand is very high.
o Social Network Services
o Cloud Platform
o Desktop users

Storage system has suffered from small random I/0
accesses

0 Random throughput of a disk <1 MB/s

Fast Next-generation storage devices are coming.

o0 Access Mechanism: Magnetics = Electronics

Low-latency = Good for random I/0O performance
Flash-SSD, DRAM-SSD, PCM-SSD, ...

Application

What matters us !
(Application throughput)

Different
Performance
Number!

What vendors give to us

i i > (Device throughput)

Common Optimization

Application MSST’10, “High Perf. SSD ...
MICRO’10, “Moneta: ...
HotStorage’11, “Onyx: ...”

FAST’12, “When Poll is better ...

Synchronous I1/0 Path

1) Use Poll instead of Interrupt
2) Remove Delayed-Execution
(e.g. I/0 scheduler, SoftIRQ handler)

We will call it “Sync+Poll”

Evaluation of (Sync+Poll)

Jetspeed DRAM-SSD
o0 Next generation SSD developed by TAEJIN Infotech.
0 DDR2 64 GB, PCI-Express interface.

0 7~8 usec for reading/writing a 4KB page
0 Peak device throughput: 700 MB/s

Evaluation of (Sync+Poll)

CPU1 CPU2 CPU3 CPU4

® ®
[M ®

U]l *
K w wWl'| 1o
& v

e &

B

M No “kblockd”
M =1 No “SoftIRQ”
v LW M]
o |l
c T
[S . Qperation!
£ (U [¢
0]
Symbol | Description
W U The current I/O request

The next I/O request

DMA pre-processing (Map)

Start I/O and poll the completion
DMA post-processing (Unmap)
Wake the I/O-waiting process up
Prepare DMA-able buffer (Bounce)

lozone Throughput (MB/s)

3

3

3

B
8

3

3

3

o

W Async+Intr M Sync+Poll

Peak Device Throughput

Sequential Read

Can’t merge writes under Sync+Poll

Sequential Write Random Read
lozone (32 Threads * 1GB File/Thread, 2 GB RAM)

Random Write

Evaluation of (Sync+Poll)

Lesson
=» Large data transfer is still important !

0 How to make a large request ?

Read-ahead under sequential read pattern
Still effective on (Sync+Poll)

Request merge under sequential write pattern
(Sync+Poll) cannot accumulate I/0 requests

o No way to make a large request under random
access pattern !

0t

g

Minimize

Mitigate
Per-Request

Per-Request
Latency

Latency

i /4444444/////

‘/4 >

' High Throughput

Solution

8 Block Regs.
= 4 1/0 Regs.

Four
/O
Req.

8 Block Regs.

> 11/0Req ~N N

Single
He)
Req.

host
memory

storage
addr. space

host
memaory

storage
addr. space

Synchronous Temporal Merge

- CPUT CPUZ CPUS cPu4 Each thread submits a block
request.
W T ® ,
Only one thread becomes a
e Compare-And-Set (CAS) “Winner"
oy e [vnmer e :

g i e RdA N
3 X The winner combines
B £ CAS concurrent block requests into
WINNer o oo one and dispatches it by using
- 2 M] MM CE'@ the new interface.
2 &
10 MM The losing threads yield CPU
—— and sleep until the completion

________ 10 of their requests.

U

Synchronous Temporal Merge

I
U]
| U
W |
whw o No plugging/unplugging is
23 required during merge operation.

Low-latency (No sleep/wakeup for a winner)

oncurrency: the maximum number of threads entering into
O subsystem

ue to ‘delayed write’ semantics, the concurrency is usually
lower than the number of user threads that issued write
~ requests.

Asynchronous Temporal Merge

v to merge [/0 requests even when the

s ; H 5 5

Asynchronous Temporal Merge

= CPU1 CPU2 CPU3 CPU4 e Each thread piles up I1/0 requests in a

- request queue.

- f_k ? L 4

B B =—— ,,

__: ‘{F({\(1 , kblockd” or “user process
B

5 B 5 1) fetches all the block requests,
Y . \ _ I 2) merges them,
o sertinto I/O scheduler's queue 3) dispatches the merged request
c 1) kwarker wakes up, or i) explicit unplug invocation
©
. E Temporal
. Merlge e (Cache-friendly request retirement by
E using SoftIRQ (instead of Inter-Processor-
MIIMJIMJIM I M| M Interrupt used in MSST’10)
perform nothing due to the queue houncing (B)
|
" 10 Tune a few parameters
@ e unplug_thresh, scheduler, ...
| : As}'nchronous'_""---.._'_'_'. """"""" ee.
U U] &sctirepanger [U U
vy W W W Asynchronous Temporal Merge
I - — Use plugging/unplugging
L,J L,J — Effective even when the concurrency is
W W low

- If a device is idle, a newly-arriving read request is
immediately dispatched by an unplug invocation with
holding a queuelock spinlock.

Evaluation

Interrupt-based 1/0 Subsystem

Application

File System

Generic Block Layer

I

[/0 Scheduler

|

SCSI Subsystem

*
*
*
*
*
*
*
*
*
*
*
*
*
*
’0
*

Customize this layer to

Translate SCSI-command into
Device-specific command.

Typical Storage Stack

Poll-based 1/0 Subsystems

Application

File System

| *

Generic Block Layer

*
I
I“l‘ll
IIIIIIlllllllll..l..’l.ll
LE N |
1/0 Scheduler 3 =
’0
*
&
| &
&
.0
....... .0
SCSI Subsystem '-....,,..
o "ua

[
|

Typical Storage Stack

lozone Throughput (MB/s)

700

600

500

400

W STM+Poll

B Async+intr M Sync+Poll

B ATM+Poll

Peak Device Throughput

Sequential Read Sequential Write Random Read
lozone (32 Threads * 1GB File/Thread, 2 GB RAM)

Random Write

LU

Evaluation
- JoZzone

| SeqR | Seq.W Rand.R Rand.W

Async+Intr 82% 68% 22% 28%
| 93% 44% 46% 45%
100% 85% 88% 92%
95% 100% 43% 96%

ST y

achieves 85%~100% of the peak device throughput.

TM achieves 95%~100% of the peak device
hroughput except for the Random-Read access pattern.

M Read M Write

Peak Device Throughput

8

| L ©) B
S

8

8

T TEETTIOE

N W B
S

8

>
)
=
S
5
=
)
S
=
x
®
;
a

3

1.74
1 = = E

Async+Intr Sync+Poll STM+Poll ATM+Poll
Postmark (4 instances, # of files=200K, # of trans.=300K)

o
1

Conclusion

Temporal Merge

0 Enables [/0 subsystem to dispatch discontiguous
block requests by using an extended I/0 interface

0 Helps to achieve near-peak device throughput from
random access workload

Future work
o Standardization. (NVMHCI)
0 Reliability (atomic update)

0 Parallelism (RAID, storage network)
0 Hybrid solution with Flash + HDD

