
Dong	In	Shin
Taejin Infotech





 I/O	demand	is	very	high.
 Social	Network	Services
 Cloud	Platform
 Desktop	users

 Storage	system	has	suffered	from	small	random	I/O	
accesses	
 Random	throughput	of	a	disk	<	1	MB/s

 Fast	Next‐generation	storage	devices	are	coming.
 Access	Mechanism:	Magnetics	 Electronics
 Low‐latency	 Good	for	random	I/O	performance
 Flash‐SSD,	DRAM‐SSD,	PCM‐SSD,	…



SSD

OS’s	
Storage	Stack

Application
What	matters	us	!
(Application	throughput)

What	vendors	give	to	us
(Device	throughput)

Different
Performance	
Number!



SSD

OS’s	
Storage	Stack

Application

Synchronous	I/O	Path

MSST’10,	“High	Perf.	SSD	….”
MICRO’10,	“Moneta:	…”
HotStorage’11,	“Onyx:	…”

FAST’12,	“When	Poll	is	better	…”

1) Use	Poll	instead	of	Interrupt
2) Remove	Delayed‐Execution
(e.g.	I/O	scheduler,	SoftIRQ handler)

We	will	call	it	“Sync+Poll”



 Jetspeed DRAM‐SSD	
 Next	generation	SSD	developed	by	TAEJIN	Infotech.
 DDR2	64	GB,	PCI‐Express	interface.
 7~8	usec for	reading/writing	a	4KB	page
 Peak	device	throughput:	700	MB/s	



poll

No	“kblockd”
No	“SoftIRQ”



Peak	Device	Throughput

Performance	Wall	(75000	IOPS≈13us/4KB)

Can’t	merge	writes	under	Sync+Poll



 Lesson
 Large	data	transfer	is	still	important	!

 How	to	make	a	large	request	?

Read‐ahead under	sequential	read	pattern
 Still	effective	on	(Sync+Poll)

Request	merge under	sequential	write	pattern
 (Sync+Poll)	cannot	accumulate	I/O	requests

 No	way	to	make	a	large	request	under	random	
access	pattern	!



High	Throughput	

Minimize
Per‐Request	
Latency

Mitigate
Per‐Request	
Latency



Temporal	Merge

Combines	multiple	(even	non‐sequential)	
requests	within	a	short	time	window,	and

Dispatches	them	by	using	a	new	I/O	
interface



8	Block	Reqs.
 4		I/O	Reqs.

8	Block	Reqs.
 1		I/O	Req



 Each	thread	submits	a	block	
request.

 Only	one	thread	becomes	a	
“winner”.

 The	winner	combines	
concurrent	block	requests	into	
one	and	dispatches	it	by	using	
the	new	interface.

 The	losing	threads	yield	CPU	
and	sleep	until	the	completion	
of	their	requests.

 Synchronous	Temporal	Merge
 No	plugging/unplugging	is	

required	during	merge	operation.



 Advantage
 Balance	of	Synchronous	I/O	path	and	Batching
 Low‐latency	(No	sleep/wakeup	for	a	winner)	
 High‐throughput	(Oblivious	to	block	access	pattern)

 Disadvantage
 Merge	Count	(i.e.	Benefit)	is	limited	by	Concurrency.	
 Concurrency:	the	maximum	number	of	threads	entering	into	
I/O	subsystem	
 Due	to	‘delayed	write’	semantics,	the	concurrency	is	usually	
lower	than	the	number	of	user	threads	that	issued	write	
requests.



 How	to	merge	I/O	requests	even	when	the	
number	of	I/O	threads	is	very	low?
Utilize	I/O	scheduler	again,	
But	this	time,	do	it	with	“the	extended	I/O	
interface”

 The	result	would	depend	on	tradeoff	bet’n
 The	advantage	of	large	data	transfer	
 The	disadvantage	of	increased	latency



• Each	thread	piles	up	I/O	requests	 in	a	
request	queue.

• “kblockd”	or	“user	process”	
1)	fetches all	the	block	requests,	
2)	merges	them,	
3)	dispatches	the	merged	request

• Cache‐friendly	request	retirement	by	
using SoftIRQ (instead	of	Inter‐Processor‐
Interrupt	used	in	MSST’10)

• Tune	a	few	parameters
• unplug_thresh,	scheduler,	…

• Asynchronous	Temporal	Merge
– Use	plugging/unplugging
– Effective	even	when	the	concurrency	is	

low



 Advantage
 It	could	maximize	the	accumulation	of	block	
requests	in	a	queue	when	the	concurrency	is	low.

 Disadvantage
 Existing	I/O	schedulers	(in	Linux)	are	not	designed	
to	accumulate	read	requests.
 If	a	device	is	idle,	a	newly‐arriving	read	request	is	
immediately	dispatched	by	an	unplug	invocation	with	
holding	a	queuelock spinlock.



 Environment
 CPU:	8	Cores	(Xeon	E5630@2.5GHz)
RAM:	2	GB	(out	of	16	GB)	is	used.
 I/O	subsystems	(see	next	slides)
Async+Intr,	Sync+Poll,	STM+Poll,	ATM+Poll

Benchmarks
 Iozone,	Postmark



Typical	Storage	Stack

File	System

Generic	Block	Layer

SCSI	Subsystem

Upper	level

Mid	level

Lower	level

SSD

Application

I/O	Scheduler

Async+Intr

Customize	this	layer	to	
Translate	SCSI‐command	into	
Device‐specific		command.	



Typical	Storage	Stack

File	System

Generic	Block	Layer

SCSI	Subsystem

Upper	level

Mid	level

Lower	level

SSD

Application

I/O	Scheduler

STM

ATM

Sync



Peak	 Device	Throughput



 STM	achieves	85%~100%	of	the	peak	device	throughput.
 ATM	achieves	95%~100%	of	the	peak	device	
throughput	except	for	the	Random‐Read	access	pattern.

Seq.R Seq.W Rand.R Rand.W
Async+Intr 82% 68% 22% 28%
Sync+Poll 93% 44% 46% 45%
STM+Poll 100% 85% 88% 92%
ATM+Poll 95% 100% 43% 96%



Peak	 Device	Throughput

1 1.27 1.26
1.74



 Temporal	Merge
 Enables	I/O	subsystem	to	dispatch	discontiguous
block	requests	by	using		an	extended	I/O	interface

 Helps	to	achieve	near‐peak	device	throughput	from	
random	access	workload

 Future	work
 Standardization.	(NVMHCI)
 Reliability	(atomic	update)
 Parallelism	(RAID,	storage	network)
 Hybrid	solution	with	Flash	+	HDD


